Soal Yg Terakait Masalah Real Tentang Program Linier

04.02.2019

Contoh soal dan pembahasan sistem persamaan linear dua variabel – OK. Kali ini penulis akan berbagi contoh -contoh soal sistem persamaan linear dua variabel or Example question and discussion systems of linear equations of two variables.karna kita orang matematika maka ngomongnya sikit ajalangsung saja.

Pertidaksamaan linear dapat digunakan untuk memecahkan masalah dalam kehidupan sehari-hari. Hal ini dapat dilakukan dengan memodelkan masalah tersebut ke dalam model matematika. Sebagai contoh perhatikan permasalahan berikut ini.

Pak Budi adalah seorang pedagang roti. Beliau menjual roti menggunakan gerobak yang hanya dapat memuat 600 roti.

Roti yang dijualnya adalah roti manis dan roti tawar dengan harga masing-masing adalah Rp 5.500,00 dan Rp 4.500,00 per bungkusnya. Dari penjualan roti ini, beliau memperoleh keuntungan Rp 500,00 dari sebungkus roti manis dan Rp 600,00 dari sebungkus roti tawar. Apabila modal yang dimiliki oleh Pak Budi adalah Rp 600.000, buatlah model matematika dengan tujuan untuk memperoleh keuntungan sebesar-besarnya! Permasalah di atas dapat dimodelkan dalam bentuk matematika dengan menggunakan sistem pertidaksamaan linear dua variabel. Dengan memisalkan banyaknya roti manis dan roti tawar secara berturut-turut sebagai x dan y, maka diperoleh tabel sebagai berikut. Sehingga apabila dituliskan dalam bentuk sistem pertidaksamaan akan menjadi seperti berikut ini.

Masalah

X + y ≤ 600, 5.500x + 4.500y ≤ 600.000, Untuk x, y anggota bilangan cacah, x ≥ 0, y ≥ 0 Dua pertidaksamaan yang terakhir (baris ketiga) menunjukkan syarat dari nilai x dan y. Karena x dan y secara berturut-turut menyatakan banyaknya roti, maka tidak mungkin nilai x dan y bernilai negatif. Perhatikan kolom keempat dari tabel di atas. Kolom keempat tersebut menyatakan fungsi yang akan ditentukan nilai maksimumnya (nilai optimum). Fungsi tersebut dapat dituliskan dalam persamaan matematika sebagai berikut.

F(x,y) = 500x + 600y Tujuan dari permasalahan ini adalah mencari nilai x dan y yang menjadi anggota himpunan penyelesaian dari sistem pertidaksamaan, serta membut fungsi f( x, y) = 500 x + 600 y bernilai optimum (maksimum). Ya, kita telah berhasil merumuskan masalah di atas ke dalam suatu model matematika. Dari ilustrasi di atas, dapatkah kalian menyimpulkan pengertian dari model matematika? Model matematika adalah suatu cara sederhana untuk menerjemahkan suatu masalah ke dalam bahasa matematika dengan menggunakan persamaan, pertidaksamaan, atau fungsi.

Semoga bermanfaat, yos3prens.

Pada pembahasan ini akan diberikan 10 soal program linear beserta pembahasannya. Soal-soal tersebut mencakup latihan, dan menentukan nilai optimum dengan menggunakan dan.

Selain itu, ada soal yang membahas mengenai kasus kusus dalam permasalahan program linear, seperti titik pojok penyebab nilai optimum yang koordinatnya memuat bilangan bukan cacah, akan tetapi fungsi objektifnya mensyaratkan bilangan cacah. Berikut ini satu dari kesepuluh soal tersebut. Seorang pedagang sepeda ingin membeli 25 sepeda untuk persediaan. Ia ingin membeli sepeda gunung dengan harga Rp 1.500.000,00 per buah dan sepeda balap dengan harga Rp 2.000.000,00 per buah. Ganool box office indonesia full. Ia berencana tidak akan mengeluarkan uang lebih dari Rp 42.000.000,00. Jika keuntungan sebuah sepeda gunung Rp 500.000,00 dan sebuah sepeda balap Rp 600.000,00, maka keuntungan maksimum yang diterima pedagang adalah Pembahasan Tanpa membuat tabel, kita dapat memodelkan kendala-kendala dari permasalahan tersebut sebagai berikut.